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A Cute Robot in A Cute Maze

We (a cute robot) need to find the optimal path in this maze!

Maze rewards are noisy

We could run through each path a lot of times and
average their rewards.

Can we do better?

Let’s use Online Learning on Graphs!

Other use cases: playing Atari games and robotic hand
manipulation
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Reward Estimation

Robot (alternatively agent or victim) navigates graph,

Every node on the graph is state
Every edge is action
Every edge is weighted by some reward

Streaming setting: in each sample (path taken through
graph), agent observes stream of data
Goal: find true edge weights, averaging observed values for
each edge
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Agent Sampling

Beginning phase is Warm Start: Agent samples a random
path and traverses it.

Then Adaptive Sampling phase: Agent controls choices,
can use strategies e.g. ϵ-greedy

Probability ϵ: sample random path
Probability 1− ϵ: traverse path with highest perceived
reward [2].
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Graph Properties

We consider DAGs (directed acyclic graphs)
Of these, we only consider layered graphs, for instance:



Adversarial
Attacks
Against
Online
Learning
Agents

Alicia Li and
Mati Yablon

Background

Our Approach

Conclusion

References

Attacks on Graphs

What if something perturbs our environment?

Motivation: performance can be degraded by:

Human biases

Modeling errors

Actual adversaries

So robustness against perturbation is important!
We study training time attacks.
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Adversarial Setting

For every sample, our adversary is able to:

Corrupt the edges that victim traverses with probability p

Corrupt that edge’s reward by a maximum of δ each
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Näıve Adversarial Strategy

Adversary wants to make optimal path seem worse than some
suboptimal path.

Consider the following Graph:
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Consider the following Graph:

Näıve Approach: 2pδ
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Näıve Adversarial Strategy Corruption

Näıve Approach: 2pδ

Effective corruption is pδ
ae

where ae is the number of paths edge
e is on.

Corrupt CE because it is traversed half as much as AC ,
doubling effective corruption
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A More Optimal Adversarial Strategy
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A More Optimal Adversarial Strategy

Our Approach: 2pδ+ extra 1
2pδ of “free corruption”
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Adversarial Algorithm 1

Corrupt optimal path downwards as much as possible,
maximizing free corruption

For every path, calculate the maximum amount the
adversary can corrupt this path upwards

Check if there is enough corruption to switch with optimal
path

Return the path with smallest reward that can be switched

Proved optimality for a naive setting
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Issues with Algorithm 1

Is not always optimal when victim samples each path equally.
Why?

Because of interfering paths

Even if we switch a low-reward path (C) with the optimal one
(A), there still may be other paths (B, an interfering path)
which initially were in between, but are now viewed as optimal!
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Characterizing Occurrence of Interfering Paths

Graphs randomly and automatically generated, 4-layer graph
used, mean 6 nodes per layer, pδ = 1
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Heuristic For Interfering Paths

Heuristic For Interfering Paths:

Corrupt path optimal path (A) downwards as much as
possible
Corrupt interfering path (B) downwards as much as
possible
Upwards corruption on the lowest possible reward path C
the victim will choose



Adversarial
Attacks
Against
Online
Learning
Agents

Alicia Li and
Mati Yablon

Background

Our Approach

Conclusion

References

Heuristic For Interfering Paths

Heuristic For Interfering Paths:

Corrupt path optimal path (A) downwards as much as
possible

Corrupt interfering path (B) downwards as much as
possible
Upwards corruption on the lowest possible reward path C
the victim will choose



Adversarial
Attacks
Against
Online
Learning
Agents

Alicia Li and
Mati Yablon

Background

Our Approach

Conclusion

References

Heuristic For Interfering Paths

Heuristic For Interfering Paths:

Corrupt path optimal path (A) downwards as much as
possible
Corrupt interfering path (B) downwards as much as
possible

Upwards corruption on the lowest possible reward path C
the victim will choose



Adversarial
Attacks
Against
Online
Learning
Agents

Alicia Li and
Mati Yablon

Background

Our Approach

Conclusion

References

Heuristic For Interfering Paths

Heuristic For Interfering Paths:

Corrupt path optimal path (A) downwards as much as
possible
Corrupt interfering path (B) downwards as much as
possible
Upwards corruption on the lowest possible reward path C
the victim will choose



Adversarial
Attacks
Against
Online
Learning
Agents

Alicia Li and
Mati Yablon

Background

Our Approach

Conclusion

References

Comparison of Both Algorithms’ Performance

Higher rank → lower reward
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Degradation of Corruption

Let’s consider an ϵ-greedy sampling victim

Path viewed as optimal is now sampled more often

But adversary can only corrupt pδ per traversal

Free corruption on optimally perceived path degrades
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Degradation of Free Corruption Paths

Adversary doesn’t want corruption on C to degrade

Ensure that C is not sampled greedily

Instead, perturb a stable path to have highest perceived
reward

Definition

Stable Path: a path that corrupted no more than pδ.
Corruption on this path can always be maintained.
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Stalling Heuristic

Corrupt A and C as before
Corrupt stable path B upwards as an intermediate step
Adversary can maintain B indefinitely
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Stalling Heuristic

Near the end of learning, corrupt B downwards so victim
chooses C . Reward of C does not degrade.
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Stalling Analysis

Using stable paths can increase adversarial budget when
B ∩ C is corrupted each time B is traversed

The fraction of times B ∩ C is corrupted increases from
warm start, increasing effective corruption

Stalling with multiple stable paths is likely optimal
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Advanced Victim Strategies

ϵ-annealing decreases ϵ over time, natural decline in
exploration

Randomized ϵ-annealing may be robust to Stalling
Heuristic

If adversary can predict ϵ, it knows when to start switching
to final path C
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Future Work

Further flesh out behavior of victim beyond simplistic
sampling strategies; e.g. epsilon annealing

Make approximations more reliable and efficient; too much
looping even in heuristic strategy

Provide more rigorous characterization of interference
paths
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